Investigation of Left Atrial Flow Stasis and Thrombogenicity in Left Atrial Appendage Occlusion using 4D-Flow MRI

Don-Gwan An¹, Min Jae Cha², Seung Yong Shin^{3,4}, Simon Song^{1,4}

Dept of Mechanical Convergence Engineering, Hanyang University
 Dept of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine
 Division of Cardiology, Dept of Internal medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine
 Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index

Why hemodynamic study for LAAO?

Risk of atrial fibrillation on left atrium

- Main cause of thrombogenicity on left atrial appendage
- Oral anticoagulants and occlusion are commonly used for the treatment.

Left atrial appendage occlusion (LAAO)

 The effect of hemodynamic changes after LAAO on thrombogenicity is not known

https://www.hirslanden.ch/en/corporate/home.htm

4D-Flow MRI

Non-invasive flow visualization technique
that uses commercial MRI to time-resolve
the three-dimensional, three-component
velocity field of blood flow in a patient.

MRI sequence for velocity measurement

Objectives

 To confirm the hemodynamic improvements in thrombogenicity after correct LAAO using 4D-Flow MRI

Methodology

3D printed left atrium phantom

Patient-specific flow circuit

Results and discussion

Pathline using velocity fields

Stasis volume

	within the entire LA phantoms			within the common LA chamber,			within	
				excluding appendage*			the appendage (pouch)	
	PRE	INC	COR	PRE	INC	COR	PRE	INC
Entire volume	199.21 ml	187.54 ml	181.72 ml	181.72 ml	181.72 ml	181.72 ml	17.49 ml	5.82 ml
Time-averaged volume of LA stasis	79.11 ml (39.71%)	73.17 ml (39.02%)	70.82 ml (38.97%)	68.94 ml (37.94%)	69.03 ml (37.99%)	69.97 ml (38.50%)	10.17 ml (58.15%)	4.14 ml (71.20%)
Volume of $r_{stasis} > 50\%$	46.84 ml (23.51%)	42.54 ml (22.58%)	38.25 ml (21.05%)	38.54 ml (21.21%)	38.02 ml (20.92%)	37.49 ml (20.63%)	8.30 ml (47.46%)	4.52 ml (77.73%)

 $r_{stasis}(\%) = \frac{\text{\# of time frames with velocities below the threshold}}{\text{total \# of cardiac time frames}} \times 100$ (Markl M, et al., Invest Radiol, 2016; 51:147-154.)

The iso-surface of particle residence time (PRT)

*The surface of initial positions of fluid particles of which particle residence time is set to the 5 cardiac cycles.

	PRE	INC	COR	
Entire volume of LA	199.21 ml	187.54 ml	181.72 ml	
Volume covered by	10.57 ml	5.56 ml	3.88 ml	
iso-PRT-surface	(5.31%)	(2.96%)	(2.14%)	

Endothelial cell activation potential (ECAP)

 $ECAP = \frac{0SI}{\frac{1}{T} \int_0^T |WSS| dt}$

Mean ECAP

PRE: 5.861 Pa⁻¹
INC: 4.792 Pa⁻¹
COR: 4.004 Pa⁻¹

- PRE has the highest ECAP and COR has the lowest ECAP

Conclusions and future work

- In vitro 4D-Flow MRI experiments enabled detailed analysis on hemodynamic changes due to occluder after LAAO
- According to the results, LAAO had significant effects on the reduction of thrombogenesis, but incorrect occlusion could be a potential risk factor of thrombosis in a remnant pouch.
- In vivo 4D-Flow MRI experiments would lead to a firm conclusion with a large study population.